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Abstract—A boundary element method is developed for the large deflection analysis of thin elastic
plates resting on elastic foundation. The subgrade reaction may depend linearly (Winkler-type) ot
nonlinearly on the deflection as well as on the point coordinates (nonhomogeneous subgrade).
Moderately large deflections are examined as described by the von Karman equations. The plate
may have arbitrary shape and its boundary may be subjected to any type of boundary condition.
The proposed method uses the fundamental solution of the linear plate theory and treats the
nonlinearities as well as the subgrade reaction as unknown domain forces. Numerical results are
presented to illustrate the method and demonstrate its effectiveness and accuracy.

1. INTRODUCTION

With the increased use of strong and light weight structures many problems of nonlinear
deformations arise. In many technical ficlds flexible plates find use with deflections which
are of the order of magnitude of the thickness of the plate but still small relative to the
overall dimensions. Such for example are the ficlds of aircraft construction, shipbuilding,
hydrospace, transportation, building and fluid tank construction. While a linear analysis
often provides useful information in a structural problem, it can seldom provide insight
into actual fatlures or the very many phenomena associated with nonlinear systems.

The governing equations for nonlincar behaviour of plates are those proposed by von
Karmin (Voil'mir, 1967) which describe the behaviour of moderately large deflections,
These equations are restricted to the condition that the shears, elongations and rotations
are small compared to unity, but the rotations may be moderately large compared to
clongations and shears. This geometry condition is common when the deflections are of the
order of magnitude of the plate thickness (Novozhilov, 1953).

Analytic solution methods, exact or approximate, depend on the shape of the plate.
Extensive literature on these methods can be found in Chia (1980). However, realistic
problems can be solved by numerical methods. The finite difference method has been largely
used. Nevertheless, this method becomes too sophisticated when the boundary does not
conform with a coordinate system. The finite element method for large deflection of plates
is well established (Oden, 1972). More recently, the boundary element method (BEM) has
been developed to treat large deflections of plates (Kamiya and Sawaki, 1982; Tanaka,
1984 ; Ye and Liu, 1985; Nerantzaki and Katsikadelis, 1988 ; Katsikadelis and Nerantzaki,
1988).

The von Karmin equations can describe large deflections of plates on elastic foundation
il they are augmented with the subgrade reaction term. The solution to this problem
becomes more difficult even in the simplest case of Winkler-type subgrade reactions. To the
author's knowledge, the existing approximate solutions and numerical results are restricted
only to circular and rectangular plates on Winkler foundation (Sinha, 1963 ; Bolton, 1972;
Datta, 1975).

For small deflections (linear analysis) of plates resting on elastic foundation the BEM
has been well established by Katsikadelis and Armenakas (1984a,b), Katsikadelis and
Kallivokas {1986, 1988), Costa and Brebbia (1985) and Bezine (1988). In this paper the
BEM is developed to analyze plates on elastic foundation governed by moderately large
deflections.
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Fig. |. Notations and coordinates.

The subgrade reaction may depend linearly or nonlinearly on the deflection as well as
on the point coordinates (nonhomogeneous foundation). The proposed method uses the
fundamental solution for the linear plate theory and treats the nonlinearities as well as the
subgrade reaction as unknown domain forces. The resulting integral equations are solved
numerically by developing an effective technique. Certain numerical examples are presented
to illustrate the method and demonstrate.its efficiency and the accuracy of the results.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Consider a thin clastic plate of thickness A, occupying a two-dimensional arbitrary
shaped region R, bounded by a curve ¢ R and resting on an elastic foundation with subgrade
reaction p (Fig. 1). The nonlincar behaviour of the plate for moderately large deflections
is governed by the differential equations proposed by von Karman which in this case can
be written as (Voil'mir, 1967)

eod_P .t
Vu—D D+DL(W,F) (1)
in R,
E
ViF= ~ E Liw,w) 2)

where w = w(x, y) is the deflection function and F(x, y) is an Airy-type stress function for
the membrane stress; D = Ek*/12(1 —v?) is the flexural rigidity of the plate having elastic
constants £ and v, g =g(x,y) is the transverse loading distributed on the plate;
p = p(x,y;w)is, in general, a nonlinear function of the point (x, ») and of the deflection
w; and L(w, F)is a nonlinear differential operator applied to w and F and represents

0w 9°F  Q*w 9*F w OF
x ox?

L(u'.F)=‘a"'f'a';7+Z\;f.— 2x oy dx &y

3

X

L(w,w) is obtained by replacing F with w in eqn (3). L(w, F) and L(w,w) define the
nonlinearity of the problem which is due to the coupling of the transverse deflection with
the membrane deformation.

The plate is subjected to the following boundary conditions on the boundary dR of
the plate;

wta, V*w = ay (4a)
O B My = 4b
ﬂx‘é;'*‘ﬂz w=f, (4b)

F=y, (5a)
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where 2, = 2{s). B, = B.(s) (i = 1,2.3) and 3, = 7.(s) (k = 1. 2) are functions specified on
¢R. V*w and Mw are the reacting transverse force and the bending moment along the
boundary and they are given as

‘3“(. 8“.

V*w = Vw—i-N,,%;; +NM—6—; (6a)
&Fw Fw
Mw = —D(F"l“:“ +V'5t‘§—>. (6b)
where
¢ _. 3w
Vw = —D[é_nv n—(v-l)a(a—n—a—)] @)

is the effective shearing force of the linear theory. The rest terms in eqn (6a) are due to the
contribution of the membrane force components N, and N,, in the transverse direction
(Dym and Shames, 1973). Using intrinsic coordinates and noting that (Katsikadelis, 1982)

)
dw dw w 0w ow 0w Ow w
T a T T T TN A A T EE TN A
dt  dsT o Ost on’ dnét Onds as

eqns (6a.b) are written as follows:

¢ X 0Q 0N
. — - JO P — .
Vi = D[‘l‘ (v l)i’s(a.\' ~ 0.\')] +N X+ N s (8a)
70
Mw= —D|®+(v—-1) T FRX L (8b)

where the following notation has been used

dw . é _, L
Q=w, X=5;, O =Vw, =5;V w oand x=k(s) (9

is the curvature of the boundary. Expressions (8a.b) for Mw and V*w, are convenient to
treat the case of nonvanishing prescribed membrane edge forces. It is apparent that all
kinds of boundary conditions with respect to the transverse deflection w (clamped edge,
simply supported edge, free edge. elastically supported edge, mixed boundary conditions)
may be treated by specifying appropriately the functions 2,(s), #,(s). On the other hand,
stress boundary conditions {eqns (5a,b)] are considered for the membrane stresses which
are rather more easily expressible in terms of the stress function (case of movable edge
subjected to prescribed inplane edge forces).

3. INTEGRAL EQUATION FORMULATION
For any function u(x, y) which is the solution of the biharmonic equation

Viu=g, (10)

the following integral representation may be obtained (Katsikadelis and Armenakas. {984a)
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u(P) = jJ.Lgda~J( —Vu— u:Vl—?—V u+€EV l.)d, (1)

where

rPlnr, r={P-0Q|. P QecR (12)

L=

is the fundamental solution to eqn (10).
Applying the Laplacian operator to eqn (11) and taking into account that it is
Vi = V3((8/6n)V3r) = 0 in the boundary integrals, we obtain

2 2. 20 € oo 0 2.2
Vu(P) = JJV rg do— rj‘(V "5;;‘7 U~ 87:V vV u) ds. 13)
R ‘R

Applying eqns (11) and (13) to the functions w and F satisfying eqns (1) and (2),
respectively, we obtain the following integral representations

w(P) = —— Jf Ay(r)g da~ T j[ J(r)p(w) da+ J‘J-A (r)L(w.F)do

- —‘;! f[/\.(r)Q+A:(r)X+A_\(r)<D+A4(r)‘P] ds  (14)

'R

F(P) = 41: J-JA (rL(w, u)dd—- —l~ J'[A Q+ A (DX +A (YD +A(n)P]ds (15)

R R

V(P = f f As(rlg do— 5,—:—,3 f J As(rIpto) do + f f As(F)L(w, F) do
F'4 R R

VF(P) = ijj/\ (NL(w, u)do'- — J[A (N®+A,(n7P) ds, (17

.4 ‘R

in which Q, X, ®, ¥ are defined by eqns (9) and 2, X, &, P denote

Q=F f:—-?f. b = VF, ‘¥’=-€—V3F. (18)
on én

Moreover, the kernels A(r) (i = 1,2,3,4) are given by the following relations

A = =2n -V = _°°i“’ (19a)

Ax(r) =27V = Inr+1 (19b)
dr

Ar}= =2n—= ~i2rinr+rycos @ (19¢)

(o7
X
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Adry=2nr=rinr, (19d)

where ¢ is the angle between the directions of r and n (see Fig. 1).

Equations (14) and (15) can give the solution of the problem if the eight unknown
boundary quantities Q, X, ®, ¥, 0, X, ® and ¥ involved in the boundary integrals as well
as the subgrade reaction p(w) and the six derivatives w,. w,,, w,,, F,,. F,,. F,, involved in
the domain integrals, are first established. We obtain the necessary equations for the
determination of these unknown guantities by working as follows,

Using the procedure presented by Katsikadelis and Armenakas (1984a), two boundary
integral equations are obtained for the function w from eqns (14) and (16). Thus, letting
point P coincide with a point pe ¢R in eqn (14) and in its Laplacian, eqn (16), and noting
that the kernel A (r) behaves like a double layer potential, we obtain the boundary integral
equations

1 | h
= D jj/hg do— 5 J‘J\AJp do+ B J'j/\aL(W- F)de
R R R

R

! H
i = 5 JJA:{[ do — % jj/\zﬂ do + B‘ JJA:L(W. F) do - J‘(A|(D+A:‘P)d.\'. (20b)
R R R

R

Morcover, by differentiating eqn (14) twice with respect to x and y, the integral rep-
resentations of the functions w., w,,, w,, arc obtained. Thus, we have

| 1 h
“’.n\'([)} = :)"7;5 JJ(AJ)ﬂg do— :5;;5 J‘J’(Ad)npda'*' ;;;5 J'J‘(A‘)”L(“" F) do
R R R
l ad

- 5. {(A 1 )x,\'Q + (A:)“X'f' (Al)c.r®+ (A-l)u‘?] ds (20(:)

o
R

2n ’
| 1 {f h
“’X}‘('P) = % (A4)xyy do — 5;['5 (Aé)x}'p do+ ;;{5 (A-t),(s‘L(w* F) do
N ] ®r - R
|

-y {(A f )uQ+ (Al)nx+ (Al)x,vq) + (Al)n\{}] ds (2Od)

2n
cR
1 ]
M‘”,(P) = Z_nf) (A-l)yyg do— 2?5
R
I

My [(A 1 ).s(rQ + (AZ)nX+ (A 3),‘-)'(” + (A4)u‘{‘] ds. (zoe)

Iz

~

-

h
(A«l)yyp do+ 7)';{5 ff(A4).t;t'L(‘vv F) do
R

Similarly. using the integral representations (15) and (17), we obtain for function F

nl= — g J‘j.ihl.(w, wydg — j(!\,ﬁ-&-/\;f’-ﬁ‘\;@-{—!\;‘p) ds (21a)
R

OR

j-(A.(TH-A:‘P) ds (21b)

‘R

b=~ g IJ‘AIL(W. w)do —
R
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E 1 -
I:,r.t(P) = - (Al)n L(W‘ W) do - 5 {(A i ).va+ (AZ).uX+ (Al)xxd)"' (Ad)xx‘y} dS
4n 2n
R OR

{2ic)
E ([ 1 "
F\'\(P) = - Z;; (AJ),\'_rL(wv W) da_ '2; N [(A 1 )nn+ (AZ),n'X+ (Al)né"" (A-l)nq’] dS
“ ‘k ¢fR
21d)
E(f 1 { .
F,(P)= — in (As) L(w,w) do— Im (AL + (A X+ (A, D+ (A, Pl ds.
YR R
(2le)
where
2cos Qw~g) 2 sin (2w -~
(A!),\'x = “(Al)v}'m T T, (At)vy = “w'_;'}—_‘ﬂv
cos 2 sin 2w
(Az}u = “"(AZ'))')' == 3 w‘ (Az}xy = - 3
r r
in 2w sin @ —cos —sin 2w sin @ —
(A})x.\‘ = §_l‘?__~u_)__.~3~(£m ¢ . (A,!)_vv = : AP 4 +
2r 2r
cos 2w sin 2Inr+2+4cos2
(Ai)w = - WT.—{E’ {Aﬂ}x.v = : 4 w-
2Inr42—cos 2w sin 2w
(Al)w = 4 (A“)I}' = 4 (22)

and w is the angle between the x axis and r (see Fig. 1),
Furthermore, using notations (9) and (18) and eqns (8a,b), the boundary conditions
(4a.,b) and (5a,b) are written as

d{dX 0Q a0
- e 1Y e | e il I 3
o, 2 Daz[‘i’ {v I)as <§s K és)] +a; (N,X+ N, és) 2y {23a)

B,.X~Dp, [®+(x-m 1)(%;3 +ux)} =f, (23b)
Q=y, ¥=y,. (23c.d)

Relations (14), (20), (21) and (23) provide the necessary equations to establish the unknown
quantities. Equations (23c.d) are directly eliminated from eqns (21) and the unknown
quantities are reduced to 13. However, a further reduction of the unknowns is not possible,
because, in a general case, substitution of eqns (23a,b) into eqns (20} yields integro-
differential equations whose solution involves considerable difficulties. For this reason,
it is more convenient to treat eqns (23a.b} as boundary differential equations using the new
boundary differential integral equation method developed by Katsikadelis and Armenakas
(1989). Thus, eqns (14), (20), (21) and (23a,b) are considered as a system of 13 simultaneous
equations, from which the unknown quantities can be established.

The bending moments, the twisting moment, and the membrane forces are obtained
by first computing the derivatives from eqns (20) and (21) and, subsequently, using the
relations
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j-element

Fig. 2. Boundary discretization (¥ boundary elements) and domain discretization (four finite
sectors).

ax* "y day? ax? ox dy
O*F ¢*F a*F
N\ = fi (5;5 . N‘, =h 5}—2 . N‘.}, = 1 _};-é;' . (24)

4. SOLUTION PROCEDURE

An analytical solution of the system of eqns (14), (20), (21) and (23a,b) is out of
question. However, a numerical solution is feasible. Thus, the boundary integrals can be
approximated using BEM with N constant elements and parabolic approximation of the
curved boundary elements, while the derivatives in the boundary differential equations
[(23a,b)] can be approximated by unevenly spaced finite difference schemes. Concerning the
domain integrals involving the unknown second derivatives and the subgrade reaction,
they can be evaluated using M-point Gauss integration over domains of arbitrary shape
(Nerantzaki and Katsikadelis, 1988 Katsikadelis, 1991; see also the Appendix). Sub-
sequently, application of the collocation technigue at the N boundary nodal points and at
the M Guauss integration points inside the domain R (see Fig. 2) yields the necessary
equations for the unknown values of the boundary and domain quantities.

Thus, using the procedure described previously and grouping the discretized equations
appropriately, we obtain the following nonlinear set of algebraic equations

An A A Ay Q B, C, 11 D, [p]
0 0 Az} A24 X B, Cj_) 02
Aj;p Ay 0 Ay, ¢ = | B, + 0 + 0 {25a)
Ay A A, O L 4 B, 0 0
Q-
X
(w] = [B,]+[CJf1+[DJpl +{As: Asz Agy Ayl o (25b)
q‘d
[Q
W B, Col(f] [Dellp]l [Aer Aez Ay Al | X
wol=|B;|+1C;] +|D; +1An A Ay A @ (25¢)
Wiy B, L Cs D, Api Ay Agy Agg R

(A AL][®] 3,] {c,]m
LA ;\24][‘1’]'[0 + C; (25d)
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F.. B, C, [f] As Au &
F.|= B.l +]C, +] A Ay ’:'i’:} (25¢)
F“ Bs C_; .'-\51 1‘54

where

[w] is an M x l vector of the unknown deflections at the W Gauss points inside
Rifw. w, w,][F, F, F,Jare3Mx1 vectors of the unknown values of second
derivatives at the M Gauss points: . X. ®. ¥, ®. ¥ are N x | vectors of the unknown
values of the boundary quantities at the N boundary nodal points; [f]. [T]. [p] are Af x |
vectors of the unknown values of the functions f=w_/f, +w, fo—2w o
= 20w, ~wi)and p = p(w) at the Gauss points: A,,. A,;. B,. B,. C,. C,. D, are
constant matrices.

Equations (25a) are linear with respect to the boundary quantities 2, X, @. ¥ and they
can be solved for them and substituted into eqns (25b) and (25¢). Similarly, eqn (25d) can
be soived for the boundary quantities ®, ¥ and substituted into eqn (25¢). These eliminations
yield the following nonlinear system of algebraic equations:

w H, H,; 0 piw) G,
Ul={Hy, H,, 0 [[FC.O)[+]GC.]. (26)
U 0 0 H. [ T G,

where w, U and U are the unknown vectors of the values of the deflections e, the derivatives
O, (), Or), and (. 0. (F)L (L), respectively, at the M Gauss points within the
domain ol the plate: #, are constant matrices und G. are constant vectors. Finally, p(w),
f(U, 0) and T(U} are the vectors of the values of the nonlinear functions p(w), L, F), and
Lisv,w) at the Gauss points. In evaluating the constant matrices in eqns {25) certain singular
domain integrals occur, which are computed using the technigue presented in Katsikadelis
and Nerantzaki (1988).

Equations (26) are solved iteratively by step increasing the foading to yield the values
of wow,.,..., F,, at the Guuss points. Backsubstitution into eqns (23) gives the unknown
boundary quantities at the nodal boundary points. Subsequently, the deflection and stress
functions are computed at any point Pe R using the discretized form of eqns (14) and
(15).

5. NUMERICAL RESULTS

On the basis of the analysis and the numerical procedure presented in the previous
sections, a computer program has been written and numerical results have been obtained.
Since the main purpose of this paper is to present the basic principles of the proposed
method and demonstrate its efficiency, the obtained numerical results are limited to a
circular plate with two different types of boundary condition, for which numerical results
are also available for compurison. In all the exampies treated. the numerical results have
been obtained using 60 constant boundary elements and 100 Gauss nodal points by dividing
the intertor of the plate into four sectors on cach of which a 25-point Gauss-Radau
integration is performed. For the iterative solution of eqns (26) about 250 iterations were
needed at each load step Ag = | and for a convergence equal to 10 *criterion. The example
problems treated are the following :

(1) A uniformly loaded circular plate with radius ¢ and clamped movable (CM) edge
(i.e. w = dw/Cn = F = ¢F/dn = 0 on the boundary) resting on a Winkler-type elastic
foundation. The numerical results have been obtained for /it = 30, v = 0.30 and are
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Fig. 3. Central deflection i versus the load ¢ ina CM circular plate (v = 0.30) resting on Winkler-

type elastic foundation.
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Fig. 4. Central membrance (6,) and bending (67) stresses versus central deflection i in a CM cireular
plate (v = 0.3) resting on a Winkler-type elastic foundation (4 = 100, 200).

Table 1. Deflections, bending and membrane stresses along the radius
in a uniformly loaded CM circulur plate resting on a Winkler-type
clastic foundation (v = 0.3, § = 15, 4 = 100)

b

riu W g, G, [ [4
0.098 1.108 2,547 2,553 0.536 0.52t
0.304 0.961 2.366 2.466 0.470 0.329
0.562 0.592 1.277 1.936 0.303 -0.113
0.800 0479 - 1.820 0.403 0.127 -0.478
0.960 0.009 -5.490 - 1.417 0.040 —0.468

presented in Figs 3 and 4 and Table 1. In Fig. 3 the central deflection w = w/h is
plotted versus the load § = ga*/Eh* for two values of the subgrade reaction parameter
/ = ka’/ D of the Winkler-type elastic foundation, p = kw, k being the constant subgrade
modulus. From this figurc it is scen that the obtained results are in very good agreement
with those obtained by Bolton (1972). However, as shown in Fig. 4, significant devi-
ations are observed in the radial bending stress 67 = a*a*/Eh’® (a° = 6M,/h*) between
the results given by Bolton (1972) and the corresponding ones obtained by the proposed
method. The analytical results have been obtained using a series solution (Timoshenko

and Woinowsky-Krieger, 1959). The differences become larger as 2 and § increase.



1876

J. T. KATSIKADELIS

w=w(0)/h

9 5 10 15 20
- q a2

Fig. 5. Central deflection w versus the load ¢ in a SM circular plate (v = 0.3) resting on u Winkler-
type elastic foundation.
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Fig. 6. Central membranc (67) and bending (6]) stresses versus central deflection w in u SM circulur
plate (v = 0.3) resting on a Winkler-type elustic foundation {4 = 100, 200).

Since for 4 # 0 there is no exact solution, one cannot tell with certainty which results
are more accurate. Nevertheless, there are two reasons which indicate that our results
are more accurate. (a) For the special case A = 0, the results obtained herein are in full
agreement with those obtained by an analytic series solution (Nerantzaki and Kat-
sikadelis, 1988; Timoshenko and Woinowsky-Krieger, 1959). (b) In our procedure,
the curvature components w,,, w,, and w,, of the deflection are first established and
subscquently are used to compute deflections which coincide with those given by Bolton
(1972). With regards to the radial membrane stress 6 = oTa*/ENZ (6™ = N, /i) itis seen
from the same figure, that it varies neghgibly with 4. The obtained results are in good
agreement with those given by Bolton (1972). Finally, in Table 1, the variation of the
deflection w, radial stresses 67 and 67 and tangential stresses 67 and 6™ along the radius,
for § = |5 are presented. These results are new and thus, their accuracy cannot be
checked.

A uniformly loaded circular plate with radius ¢ and simply supported movable (SM)
edge (i.e. w = Mw = F = {F/dn = 0 on the boundary) resting on 4 Winkler-type elastic
foundation. The results have been obtained for a/h = 50. v = 0.30 and are presented
in Figs 5 and 6 along with those given by Bolton (1972). As it is seen from these figures,
there is very good agreement in the deflection and the radial membrane stress 47
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However, the deviation in the radial bending stress. as in the case of a CM plate. is not
negligible.

6. CONCLUDING REMARKS

An efficient boundary element approach is developed for the nonlinear analysis of thin
elastic plates resting on elastic foundation. The method is not actually a pure boundary
element method. since it also requires domain discretization to compute unknown quantities
in the interior of the plate. However, the linear equations are still defined by the boundary
discretization and thus, the method retains most of the advantages over the domain-type
methods. [t is worth mentioning that:

(a) The proposed method is suitable for analyzing plates having arbitrary shape and
subjected to any type of boundary condition.

(b) The subgrade reaction may depend linearly or nonlinearly on the deflection.

(c) The method is well-suited for computer-aided analysis.

(d) Accurate results are obtained using a relatively small number of boundary and
domain nodal points.
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APPENDIX

A Gaussian quadrature technique for regions of arbitrary shape

We review here the finite sector method (FSM) for the evaluation of domain integrals over regions of arbitrary
shape.

Consider the integral
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Sector base

X

Fig. Al. Two-dimensional domain divided into four sectors.

.

J‘J_Q(Q)dau. (A1)

R

where R is a two-dimensional region of arbitrary shape. We divide the region into a finite number of sectors by
straight lines emanating from a peint inside the region (common vertex of sectors) and reaching the boundary
(sce Fig. A1). For domains with complex geometry more than one vertex may be used. Subsequently, each sector
is mapped onto a triangle on which a ready-to-use Gauss Radau integration scheme is employed. Thus. the
integral (A1) may be written as

Ay A\l "
J‘jq((_’ldﬂu =Y J‘J![(Q)lJA(Q)‘(|”QD =Y ¥ o @Ol (A2)

A A= % k==l
where 8 s the number of the sectors mis the number of Gauss Radaw points in the kth sector; ¢ QF
(7= 1,2..... nn) are the weight Gactors and the Gauss Radau points in the A th sector; and 4 (Q)) are the values

of the Jacobian of the transtormation which transtorms the & th sector onto the trizngle RX.
The transformation that maps the sector onto o triangle is given by Katsikadelis (1991) as

. (.n) N
v flAa ). FEa (AY)
¢4

where © = () is the equation of the sector base in local coordinates (see Fig. A2).

When this technigue is used with BEM, the sector base consists of a group of consecutive boundary elements
and it is convenient to approximate the function € = f(F) by an interpolating polynomial rather than using the
analytic expression of the curve. Thus, if & polynomial approximation s used, the sector base is chosen so that
it can be represented us

= f(F) =2+, F+20.05 + -+, (Ad)

The coeflicients 2, (1 = 0,1,2,...,n) ure computed from the coordinates of the nodal and/or the extreme points
of the boundury elements.

Global azes n (o]

Fig. A2. Mapping of a sector onto a triangle.



